M1. D	[1]
M2. D	[1]
M3 .D	[1]
M4 .A	[1]
M5. D	[1]
M6.C	[1]
М7.В	[1]
M8. C	[1]

M10.	(a)	most powerful reducing agent: Zn;	1		
(b)	(i)	reducing species: Fe ²⁺	1		
	(ii)	oxidising species: Cl ₂ ;	1		
(c)	(i)	standard electrode potential 1.25 V;	1		
	(ii)	equation: $TI^{3*} + 2 Fe^{2*} \rightarrow 2Fe^{3*} + TI + balanced;$	1		
		correct direction;	1		
(d)	(i)	moles KMnO₄ = 16.2 × 0.0200 ×10⁻₃ = 3.24 ×10⁻₄;	1		
		moles H_2O_2 = Moles KMnO ₄ × 5 / 2 = 8.10 × ⁻⁴ ;			
		8.10 × 10 ^{-₄} moles H₂O₂ in 25 cm³ 8.10 × 10 ^{-₄} × 1000 / 25 in 1000 cm³ = 0.0324 mol dm⁻³;			
		hence g dm-₃ = mol dm-₃ × M₂ = 0.0324 × 34 = 1.10; (penalise use of an incorrect H₂O₂ to KMnO₄ ratio by two marks)			
	(**)				
	(ii)	PV = nRT;	1		
		hence V = nRT / P = 8.10 × 10 ⁻ × 8.31 × 298/98000;	1		
		= 2.05 × 10⁻⁵;	1		

units m³;

(mark consequentially to answers in (c)(i)) (allow correct answers with other units) (answers to (c)(i) and (ii) must be to 3 significant figures; penalise once only)

1

M11.A

[1]

[14]

(a) reactants brought together / increased concentration on surface or increased collision frequency (1) reactants must be correctly orientated (1) reaction on the surface (1) products desorbed (1) example of a catalysed reaction (not a named process) (1) a suitable catalyst for this reaction (1)

penalise incorrect second reactions and catalysts

If absorption too weak reactants not brought together (1) e.g. silver (1) If adsorption too strong products not desorbed (1) e.g. tungsten (1)

max 8

(b) Equations:

 $Cr_2O_7^{2-}$ +14 H⁺ + 6 Fe²⁺ \rightarrow 6 Fe³⁺ + 2 Cr³⁺ + 7 H₂O (1) Zn + 2 Fe³⁺ \rightarrow Zn²⁺ +2 Fe²⁺ (1)

Method

Titrate measured volume solution against K₂Cr₂O₇ (1)

Reduce same volume solution with zinc (1)

Filter off excess zinc (1)

Titrate total Feⁿ⁺ using K₂Cr₂O₇ (1)

Percentage Fe³⁺ = 100 × (titre2 - titre1) / titre 2 or equivalent **(1)**

7

7

2

M13.D

M14.A

[1]

[1]

M15.	(a)	(i) Heterogene Catalyst:-	cous:- In a different phase to reactants (1) Increases reaction rate (1) Alternative route or route described (1) Lower E_a (1) Unchanged at end of reaction (1) Max 4
	(ii)	Feature:- QoL Equations	Variable oxidation states shown by vanadium (1) $V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ (1) $2V_2O_4 + O_2 \rightarrow 2V_2O_5$ (1)

(b)
$$VO_{2^{+}} + 4H^{+} + 3e^{-} \rightarrow V^{2^{+}}$$
 (aq) + $2H_{2}O$ (1)

 $Zn \rightarrow Zn^{2+} + 2e^{-}$ (given)

$$2VO_{2^{+}} + 8H^{+} + 3Zn \rightarrow 3Zn^{2+} + 2V^{2+}$$
 (aq) + $4H_{2}O$ (1)

Mol KMnO₄ = mv/1000 = 0.0200 × 38.5/1000 = 7.70 × 10⁻⁴ (1)

Mole ratio MnO_4^- to V(II) = 3:5 deduced

or equation

$$5V^{2*} + 3MnO_{4^{-}} + 4H^{*} \rightarrow 2H_{2}O + 3Mn^{2*} + 5VO_{2^{+}}$$
 (2)

Mol V(II) = $7.70 \times 10^{-4} \times 5/3$ (1) = 1.283×10^{-3}

Mass V = 1.283 × 10⁻³ × 50.9 (1) = 0.0653 g

% V in sample = 0.06532 × 100/0.160 = 40.8 (1)

6

M16.D

[1]

[15]