M1.D

M2.D

M3.D

M4.A

M5.D

M6.C

M7.B

M8.C

M9.D
Page 2
PhysicsAndMathsTutor.com

M10. (a) most powerful reducing agent: Zn ;
$\begin{array}{lll}\text { (b) } & \text { (i) reducing species: } & \mathrm{Fe}^{2+} \\ & \text { (ii) oxidising species: } & \mathrm{Cl}_{2} ; \\ \text { (c) } & \text { (i) standard electrode potential } & 1.25 \mathrm{~V} \text {; }\end{array}$
$\begin{array}{lll}\text { (b) } & \text { (i) reducing species: } & \mathrm{Fe}^{2+} \\ & \text { (ii) oxidising species: } & \mathrm{Cl}_{2} ; \\ \text { (c) } & \text { (i) standard electrode potential } & 1.25 \mathrm{~V} \text {; }\end{array}$
$\begin{array}{lll}\text { (b) } & \text { (i) reducing species: } & \mathrm{Fe}^{2+} \\ & \text { (ii) oxidising species: } & \mathrm{Cl}_{2} ; \\ \text { (c) } & \text { (i) standard electrode potential } & 1.25 \mathrm{~V} \text {; }\end{array}$
$\begin{array}{lll}\text { (b) } & \text { (i) reducing species: } & \mathrm{Fe}^{2+} \\ & \text { (ii) oxidising species: } & \mathrm{Cl}_{2} ; \\ \text { (c) } & \text { (i) standard electrode potential } & 1.25 \mathrm{~V} \text {; }\end{array}$
(ii) equation: $\mathrm{Tl}^{3+}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+\mathrm{TI}+$ balanced;
correct direction;
(d) (i) moles $\mathrm{KMnO}_{4}=16.2 \times 0.0200 \times 10^{-3}=3.24 \times 10^{-4}$;
moles $\mathrm{H}_{2} \mathrm{O}_{2}=$ Moles $\mathrm{KMnO}_{4} \times 5 / 2=8.10 \times{ }^{-4}$;
$8.10 \times 10^{-4}$ moles $\mathrm{H}_{2} \mathrm{O}_{2}$ in $25 \mathrm{~cm}^{3}$
$8.10 \times 10^{-4} \times 1000 / 25$ in $1000 \mathrm{~cm}^{3}=0.0324 \mathrm{~mol} \mathrm{dm}^{-3}$;
1
hence $\mathrm{g} \mathrm{dm}^{-3}=\mathrm{mol} \mathrm{dm}^{-3} \times M_{\mathrm{t}}=0.0324 \times 34=1.10$;
(penalise use of an incorrect $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{KMnO}_{4}$ ratio by two marks)
(ii) $\mathrm{PV}=\mathrm{nRT}$;
hence $V=n R T / P$
$=8.10 \times 10^{-4} \times 8.31 \times 298 / 98000$;
$=2.05 \times 10^{-5}$;
units $\mathrm{m}^{3}$;
(mark consequentially to answers in (c)(i)) (allow correct answers with other units) (answers to (c)(i) and (ii) must be to 3 significant figures; penalise once only)

## M11.A

M12. (a) reactants brought together / increased concentration on surface
or increased collision frequency (1)

reactants must be correctly orientated (1)

reaction on the surface (1)

products desorbed (1)

example of a catalysed reaction (not a named process) (1)

a suitable catalyst for this reaction (1)

penalise incorrect second reactions and catalysts

If absorption too weak reactants not brought together (1)

e.g. silver (1)

If adsorption too strong products not desorbed (1)

e.g. tungsten (1)
$\max 8$
(b) Equations:
$\mathrm{Cr}_{2} \mathrm{O}_{7^{2-}}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ (1)
$\mathrm{Zn}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+}$ (1)
Method
Titrate measured volume solution against $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (1)
Reduce same volume solution with zinc (1)
Filter off excess zinc (1)
Titrate total $\mathrm{Fe}^{n+}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (1)

## M13.D

M14.A

M15. (a) (i) Heterogeneous:- In a different phase to reactants (1) Catalyst:- Increases reaction rate (1) Alternative route or route described (1) Lower $E_{a}$ (1) Unchanged at end of reaction (1) Max 4
(ii) Feature:- QoL Variable oxidation states shown by vanadium (1) Equations $\quad \mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}(1)$ $2 \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~V}_{2} \mathrm{O}_{5}$ (1)
(b) $\mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (1)

$$
\begin{gathered}
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \text {(given) } \\
2 \mathrm{VO}_{2^{+}}+8 \mathrm{H}^{+}+3 \mathrm{Zn} \rightarrow 3 \mathrm{Zn}^{2+}+2 \mathrm{~V}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

$\mathrm{Mol} \mathrm{KMnO} 44=\mathrm{mv} / 1000=0.0200 \times 38.5 / 1000=7.70 \times 10^{-4}(\mathbf{1})$
Mole ratio $\mathrm{MnO}_{4}^{-}$to $\mathrm{V}(\mathrm{II})=3: 5$ deduced
or equation

$$
5 \mathrm{~V}^{2+}+3 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Mn}^{2+}+5 \mathrm{VO}_{2}^{+}(\mathbf{2})
$$

Mol $\mathrm{V}(\mathrm{II})=7.70 \times 10^{-4} \times 5 / 3(1)=1.283 \times 10^{-3}$

## Page 5

Mass $V=1.283 \times 10^{-3} \times 50.9(1)=0.0653 \mathrm{~g}$
$\% \mathrm{~V}$ in sample $=0.06532 \times 100 / 0.160=40.8(1)$

M16.D

